Holder, A.; Hayes, F.

Sweet potato leaf stomatal conductance, leaf chlorophyll content, and tuber yield after exposure to three ozone concentrations in heated glasshouses, UK, 2019-2021

The data comprises physiological and yield measurements from an ozone (O3) exposure experiment, during which three varieties of sweet potato (Ipomoea batatas) were exposed to Low, Medium and High O3 treatments using heated dome shaped glasshouses (solardomes). The Erato orange variety was exposed to the three treatments from June to October 2019 and the Murasaki variety from June to October 2021. The Beauregard variety was grown on two occasions, with treatments from August to October 2020, and June to October 2021.

Measurements were taken of leaf stomatal conductance, leaf chlorophyll content index as well as the harvest (fresh) weight of tubers. All measurements were made by the corresponding author. The experiments were carried out in the UKCEH Bangor Air Pollution Facility. This work was carried out as part of the UK Centre for Ecology & Hydrology Long-Term Science Official Development Assistance ‘SUNRISE’ project, NEC06476.

Stomatal conductance was found to be significantly reduced in the elevated ozone treatments. Yield for the Erato orange and Murasaki varieties was reduced by ~40% and ~50% (Medium and High, respectively, vs Low) whereas Beauregard yield (2021) was reduced by 58% in both (the tubers for the Beauregard plants grown in 2020 were not fully formed).

Sweet potato is a staple food crop grown in locations deemed to be at risk from O3 pollution (e.g. Sub-Saharan Africa), and this dataset adds much needed stomatal conductance and yield data of sweet potato grown under different O3 exposure conditions. This can be used to improve model predictions of O3 impacts on sweet potato, along with associated risk assessments.
Publication date: 2022-02-24